BRUKER

Bruker Daltonics

Application Note # LCMS-56

ICPL Labeling in Functional Proteomics Experiments: Substrate Identification of the Extracellular Protease ADAMTS1 using SDS-PAGE LC-MS/MS

Abstract

Isotope-Coded Protein Label (ICPL [1,2]) is known as an accurate protein labeling strategy for quantitative proteomics which enables protein pre-fractionation and therefore provides reduction of complexity, detection of protein isoforms, posttranslational modifications, and investigations of enzymatic reactions. Such an investigation is demonstrated in a workflow using SDS-PAGE for protein pre-fractionation, a Bruker Ion Trap mass spectrometer, and ProteinScape[™] for quantitative analysis.

Introduction

Proteolytic modification of components of the extracellular milieu by metalloproteinases plays important roles in the regulation of multiple cellular and physiological processes and pathological conditions. Exploring the substrate repertoire of metalloprotenaises is required to unveil the mechanisms involved in their biological function. ADAMTS1 (A Disintegrin and Metalloprotease domain with Thrombospondin motifs 1), is a secreted enzyme of the ADAMTS family of proteases, which is related to angiogenesis, inflammation, and cancer [3]. We describe a proteomic screening for ADAMTS1 substrates by analyzing the protein profiles obtained from cultures of transfected cells overexpressing the protease as compared to parental cells. The secreted proteins from the two cell lines were modified with two different isotopomers of the non isobaric ICPL duplex label, mixed and quantitatively compared in a SDS-PAGE LC-MS/ MS workflow. Seven proteins were identified as putative substrates of ADAMTS1.

Experimental

Conditioned media from 293T cells (human embryonic kidney), parental and overexpressing the secreted protease ADAMTS1, were collected. Proteins were concentrated by UF, then subjected to TCA-acetone precipitation, resuspended in guanidinium chloride buffer and guantified. 100 micrograms of each sample were then labeled with ICPL. The ICPL reagent is shown in Figure 1. Parental cell proteins were labeled with the heavy isotopomer of ICPL doublex, and ADAMTS1 overexpressing cells with the light isotopomer of ICPL. The mixture of the two labeled samples was separated by SDS-PAGE. The gel lane was cut into twenty fractions and subjected to in-gel trypsin digestion. Each digest was analyzed by nano RPLC-MS/MS on a Bruker Ion Trap system. Quantitation of relative protein abundances was performed based on the chromatographic signal intensities of labeled peptide pairs, using ProteinScape as integrated software platform for quantitative LC-MS/MS workflows. The applied workflow is visualised in Figure 2.

Results

The ICPL based 1D-SDS LC-MS workflow allowed an efficient quantitative comparison of the analyzed proteomes. A total of 827 proteins were identified on the basis of 2001 peptide IDs. Quantitative data were obtained for 511 proteins (61%), based on 1254 labeled peptide IDs. Labeling was highly efficient, as almost no peptides with non-derivatized lysine residues were observed (>99%). In agreement with previous experiments using DIGE [2], basal lamina Nidogen 1 and 2, were identified as putative substrates of the ADAMTS1 protease. With the ICPL strategy provided here, the ID of new putative substrates was achieved. These results are summarized in Table 1. Using a quantitative top-down analysis strategy (SDS-PAGE) proteolytic degradation can be detected: A substrate protein occurs in several bands and shows in the intact protein band a different regulation than in the bands of the proteolytic fragments. Figure 3 shows Nidogen-1 as example, which was identified in several fractions: In fraction 2 we observe the intact protein, in fraction 3 the high mass proteolytic fragment PF1 and in fraction 10 the low mass proteolytic fragment PF 2. The abundance of the intact Nidogen-1 is about 2 times lower in the ADAMTS1 overexpressing cells, while in the fractions where its proteolytic fragments are

observed, their abundance is increased 2 times compared to the control cells. The analysis of the band containing the Nidogen-1 proteolytic fragment PF1 is presented in Figure 4. By using ProteinScape for data processing, the complete information of the proteomic experiment, e.g. meta information of the experiment, the gel, the MS and MS/MS data as well as the derived identification and quantitation is stored and linked at a central place and can be easily retrieved with the aid of different views and queries.

Figure 1: ICPL Duplex labeling chemistry for quantitative proteomics

ICPL workflow

Figure 2: Experimental Workflow. ICPL permits protein pre-fractionation and quantification via MS spectra. Regulated peptides are preferred precursors in AutoMS(n) measurements, which lead to protein identification with Mascot.

Figure 3: Identification and quantitation of Nidogen-1 in different bands of the 1D gel. Compared to the control, Nidogen-1 is down regulated in the fraction containing the intact protein (FL), while it is up regulated in the fractions containing the proteolytic fragments (PF1 and PF2).

Table 1: Putative substrates of ADAMTS1 and IDed proteolytic fragments. Fragments exhibit opposite regulation as parent proteins. The results are in agreement with previous experiments using DIGE [3].

Protein	FL: full length PF: proteo- lytic fragment	Mapped region (total aminoacids)	Obs. Mw (kDa)	Total Peptides	Labeled Peptides	ADAMTS1 / Control ratio (L/H ICPL) (StdDev)	ADAMTS1/ Control ratio (DIGE)		
ADAMTS1	FL		105	78	72	>20	10		
Nidogen 1	FL	124-1247 (1247)	180	9	2	-1.85 (0.04)	-1.61		
Nidogen 1	PF1	424-1247 (1247)	116	21	6	2.46 (0.74)	3.25		
Nidogen 1	PF2	124-176 (1247)	40	18	7	1.88 (0.40)			
Nidogen 2	PF1	309-968 (1375)	180	10	2	2.19 (0.40)			
Nidogen 2	PF2	91-171 (1375)	38	4	1	2.05	1.86		
Fibulin-1	PF1	396-576 (703)	38	10	6	3.24 (0.37)			
Fibulin-1	PF2	182-619 (703)	55	8	2	3.32 (1.03)			
Beta-amyloid protein precursor (APP)	PF1	103-516 (770)	55	5	3	1.33 (0.42)			
Beta-amyloid protein precursor (APP)	PF2	117-535 (770)	80	9	3	1.24 (0.16)			
Nucleobindin-1	FL	54-461 (461)	55-60	20	10	-1.44 (0.10)			
Nucleobindin-1	PF1	97-310 (461)	40	19	10	1.71 (0.40)			
Nucleobindin-1	PF2	179-377 (461)	25	10	5	3.14 (0.78)			
Insulin-like growth factor binding protein 2	FL	45-320 (328)	36	12	5	-3.56 (0.10)			
Insulin-like growth factor binding protein 2	PF1	45-240 (328)	15	7	2	5.42 (0.73)			
Insulin-like growth factor binding protein 2	PF2	284-304 (328)	9	3	2	1.67 (0.02)			
Legumain	FL	45-403 (433)	55	7	4	-2.88 (0.08)			
Legumain	PF1	318-433 (433)	20	8	5	4.69 (0.95)			

roteinScape - Wolfgang - hbappproteinO1																	7 N
Edit Wew Window Help									_								-
- (9) TL																S when TT IT	
	PE store the	1.46														ti (tit the land)	
CONTRACTOR (1)	DE Mari Vier		2021														
HUPO2010 ICFL [3]	Row 3	is a repu	Accession	Protein					w firmal	et.	Some	Dentides	50	Medianil Ai)	#0.80	CV [96]0 AH	0111
1 TCPL 4plex 100ng Trypsin-GuC [5]	t	R	ND1 H.MAN	Ndogen-1.C	S=Homo sana	rs (NeND)	PE=15V=2		136.4	5.0	1063.5 (M:1063.5)	23	21.7	2.461	6	29.8	2
👯 ICPL 4plex100 ng [5]	2	2	FBLN1_HUMAN	Fibuln-105	Homo saplen	GN=FBUN1 P	PE=1SV=3		77.2	5.0	856.5 (M.856.5)	17	34.7	2.92	5	30.9	2
ADAMISI Subtrates [3]	3		ATS1_HUMAN	A disintegrin	and metalopr	otemase with t	thrombosponde	n	105.3	6.4	705.9 (M:705.9)	11	21.3	12,751	2	26.1	2
ID SDS PAGE [20]	4	2	UBA1_HUMAN	Ubigutan-like	modifier-activ	ating enzyme	1 OS=Homo sa	B.,	117.B	5.4	685.7 (M:685.7)	12	16.6	0.41	3	27.6	1
 Band 1 [1] Band 2 [1] 	5		CO6A1_HUMW	V Colagen alph	na-1(VI) chain	OS=Homo sap	piens GN=COL6	5	108.5	5.1	624.5 (M:624.5)	14	16.6	1.27	- 4	22.9	6
* = Band 2 [1]	6		NID2_HUMAN	Nidogen-2 0	S=Homo sapé	ris GN=MD2	PE=1SV=2		151.3	5.0	591.7 (M:591.7)	12	14.9	2.10	1		
= = 6 6 6 0 3 [1]	7	M	CSTN1_HUMAN	al Calsyntenin-	105=Homos	apiens GN=CL	STN1 PE=1 SV	(=1	109.7	4.7	453.0 (M:463.0)	13	14.5	1.01	5	9.7	4
II HTT 109, Kroc Human Marcet 2010-09-12 09:43:37	8	M	VINC_HUMAN	Vinculin OS=	Homo sapiens	GN=VCL PE=	1 SV=4		123.7	5.4	442.5 (M:442.5)	10	19.0	0.451	5	24,9	9
 J. Compounds [2,643] 	9	No.	PIDN_HUMAN	Percoadasin	nomolog OS=	tomo sapiens	GN=P3DNPE=	Ferr	165.2	6.8	393.9 (M:393.9)	1	0.0				
* # Band 4 [1]	11	E C	LESSO PRIMA	Calecto 3.b	ning receptor	negative regu	Lator OSIPHONIC	0	66.2	5.0	367.0 (M.367.0)	0	23.2	1.22		ME	
* # Band 5 [1]	17	10	KICS LAMAN	Kerato have	Loutorkalata	9 OE-Homo	control Children	201	62.1	5.0	276 7 (M-276 7)	4	10.1	1.44	- 7		2
* 📰 Band 6 [1]	13	10	Ad HUMAN	Amyloid het	A4 proteip O	SaHomo tanie	ens (NI=APP PF	E	B5.9	46	285 5 (M-285 5)	7	91	0.97	1		
* 📰 Band 7 [1]	14	N	SE383 HUMAN	Solong facts	r 38 subunit :	OS=Homo s	aciens GN=5F3		135.5	5.0	276.9 (M:276.9)	4	48	0.64	1		
* 🖀 Band 8 [1]	15	M	CSTN3_HUMAN	Calsyntenin-	3 OS=Homo s	apients GN=CL	STN3 PE=1 SV	/=1	106.0	5.1	265.9 (M:265.9)	6	8.8	0.76	2	2.0	2
* Band 9 [1]	16	1	GANAB H.MAN	Neutral alpha	a-diucosidase A	B OS=Homo	sapiens GN=GA	20	106.8	5.7	236.9 (M:236.9)	8	9.9	0.93	3	34.4	8
a 🖀 Band 10 [1]	17	2	GLU2B_HUMAN	Glucosidase	2 subunit beta	OS=Homo sa	pieris GN=PRK	C	59.4	4.2	215.7 (M:215.7)	7	12.3	0.59		11.1	3
■ L ICPL X 10_1-8,1_01_1084.d [2]	18	2	FINC_HUMAN	Fibronectin (05=Homo sap	ens GN=FN1 i	PE=1 SV=3		262.4	5.4	199.7 (M:199.7)	5	3.5	1.17	1		
II HC1_301_Arg-c Human_Macco_2010-05-12.00.43.37	19		HSP74_HUMAN	Heat shock	70 kDa protein	4 OS=Homo	sapiens GN=H5	5	94.2	5.0	184.1 (M:184.1)	4	10.2	0.64	2	24.9	6
# E Rend 11 [1]	20	M	ACTIVA_HUMAN	Alpha-actinin	r-4 OS=Homo	sapiens GN=A	ICTIV4 PE=1 SV	(=2)	104.8	5.2	182.4 (M:182.4)	3	6.7	0.76	1		
* = Band 12 [1]	Rea P	OK	m/z calc. z	∆ m/z [ppm]	Rt[mn]	Scor	res R. Sequ	Jerice			Modificat	ons +		Range	0. 1	JH .	
* # Band 13 [1]	1.	2	753.3292 2	-171.53	84.32	76.8 (M:76.	.8) 1 R.TQ	FTCECSK	R.G		Carbamid	omethyl: 5, 7		691 - 702	-		
* # Band 14 [1]	10	20 30	49.5633 2	-155.55	90.50	56.1 (M:56	1) 1 P.QA	EVTENSHE	SNLVIKQR.F		KPL: 16			519 - 536	2 C	57	
# # Band 15 [1]	1.		599.4524 3	-103.46	42.00	42.7.04.42	5) 1 PLNP	WIDSNLD	REVACIDEIC	Ret	KPL: 16			1,0.54 - 1,055		41	
* 📰 Band 16 [1]	2 1		678568 2	-95.00	43.30	92.7 M.92	7) 1 P.EV	(ak) DGTOR	D		10PL: 4,5			1045.1055		40 85	
* 🗮 Band 17 [1]	2		40.3086 2	-169.62	57.20	27.4 M-27	4) 1 R.CV	PGEVEKTR	c		KPL:8:0	arbamidomethol		839 - 848	2	24	
* Band 18 [1]	2. 1		01.4591 3	267.20	118.47	30.0 (M:30	0) 1 R.NF	WIDSNLD	REVAKLOGTO	R.R.	ICPL:13C	(6): 16	100	1.034 - 1.055	2	41	
# # Rand 19 [1]		The second se								•					-		
	Sequence	SOUND	zo	20 and the stand	 Progress v 	50	Query :	20	0	0	90	00	10	120	120	140	-
	MLABSSRIPJ	AVTPA	LLEPE LLAGP	VOCLS ROKLP	PFODG QGDL	ELEDGO DFV	VSPALELS GA	LPFYDRSD	IDAVYVTTN	G IIA	TSEPPAR ESHPOLF	PPT FGAVAPFL	AD LI	DTTDGLGKV Y	FREDLOPSI	TORAAECVHR	
	150		140	120	180	190	200	210	10	Ó	230	140 2	50	2.60	270	280	
Eand 3	GABETRA Chi	S STAARS	TWERV APTOG	PSRDP DQKGK	PNTFQ AVLA	SSDSSS YAL	IATABEDG FO	FHTTYSER	ENDOLOGYPANA	A FSC	GSVOPLN REMOATN	IFA NORESIEN	LA RS	SSNSGQQGV W	FRIGSPAT	TNGVVPADVI	
	290	100000	100	310	320	330	240	350	36	0	170	80 2	90	400	410	420	
	LOTEDOAEYI	DEDED.	YDLAT TRLCL	EDVOT TPFSY	KALBB GGAD	TYSVPS VLS	SPRRAATE RP	LGPPTERT	RSFQLAVET	7 800	SHPQVIDV DEVEETO	VVF SYNTDSRQ	TC AN	MINHOCRAH YE	CRDYATOF	CCSCVAGYTG	
	430		440	450	460	428	580	490	50	0	510	528 5	30	540	350	360	
	NGROCVARGE	S PORVIS	SEVES RIFVG	BEQUE IVEEN	TULES TVVN	NHGRSY TAL	ISTIPETV OF	BLLPLAPV	GGIIGUMFA	V ECO	GFRENCES ITGGEFT	ROA EVTYVEHP	GN L1	VINCEFSCI DE	ENGHLTIDT	ELECEVPQIP	
				800	100	410		43.0			470		10	400	400	200	_
	FGSSVHIEP	TELVN	TSTSV ITSSS	TREYT VTEPE	RDGAS FSBI	TTTOWR OT	ITFORCUN DD	SPPALPST	QQLSVDSVF	V LYN	POWEKILS YAFSNUL	GPV REGSPDAL	ON PO	CVIGTNOCD TH	CAACRPGER	TOFTCECSIG	-
				10-30-											-	Contraction of the local division of the loc	
	710		720	750	740	750	760	770	70	0	790	900 000	10	820	830	040	
	PRODORTCYT	IDECS	EQPSV COSHT	ICNNH POTYP	CECAE GADA	SDEGTC VAN	AADCHDIN AC	ETGLHNCD	IPOPAQCIT	T 008	STTCSCL FOFSODO	OYC COADECOD	SP CI	SPDAFCYNT PO	SEFTCOCKP	GYOCDOFREV	
	850		840	870	880	890	900	910	192	Q	1920	140 11	58	1140	970	960	
	POSVERTRO	HEPEH	ILGAA GATDP	CONID ROTAN	PECDA HORY	APTOCH 681	TOYCUCVD BD	GREVEOTR	TREGNTREC	L STV	APPINQS PAVPTAV	IPL PPOTHLLF	AQ TO	ONIERLPLE GO	THURTEAK	AFLHVPARVI	
	990		1000	1010	1010	1030	1040	1050	106	Ö	1070 1	10	90	1100	1110	1120	
	IGLAFDCVDS	C NVVVIT	AGDIE STOP	SLNGG EPTTI	TROOM GAPK	GTAVDE LGI	INIFWIDS NL	DRIEVANL	DGTORBVLF	TOL.	UNPEGIV TORVEOM	TOWNEDMP	RT RT	TSYNDOTHE BI	LLVODDLGL	PNGLTFDAFS	

Figure 4: Analysis of the experiment using ProteinScape. The screenshot shows the Mascot Search result for the fraction containing the Nidogen-1 proteolytic fragment PF1. The software allows storage and linkage of the complete information gathered during a proteomic experiment at a central place. The gel separation, identification and quantitation of proteins and peptides of the selected band are displayed.

Conclusion

ICPL labeling chemistry in combination with SDS-PAGE LC-MS/MS allowed the identification of new putative substrates of metalloproteinase ADAMTS1.

The proteolytic fragments were assigned based on their MW in SDS-PAGE, their significant up regulation in comparison to the down regulation of the full length sequences, and their reduced coverage of the parent protein sequence.

Keywords	Instrumen
Cancer	Software
ICPL labeling	Bruker Ion
Metalloproteinase	spectrome
Quantitative Analysis	ProteinSca
Functional Proteomics	

nstrumentation & Software
Bruker Ion Trap mass spectrometer
ProteinScape

References

- [1] A. Schmidt, J. Kellermann, F. Lottspeich, Proteomics 5 (2005), 4-15.
- [2] Bruker Daltonics Application Note #MT-78, ICPL: A new quantitative mass spectrometric method for proteomics.
- [3] F. Canals, N. Colome, C. Ferrer, MdelC. Plaza-Calonge, J.C. Rodriguez-Manzaneque, Proteomics 6 Suppl 1 (2006), 28-35.

Authors

Francesc Canals¹, Nuria Colomé¹, Joan J. Bech-Serra¹, Juan Carlos Rodríguez-Manzanegue²

1 Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital Barcelona

2 Pfizer-University of Granada-Andalusian Government Center for Genomics and Oncological Research (GENYO), Granada

Wolfgang Jabs, Markus Lubeck, Carsten Baessmann, Detlev Suckau Bruker Daltonik GmbH, Bremen

For research use only. Not for use in diagnostic procedures.

www.bdal.com Bruker Daltonik GmbH

Bremen · Germany Phone +49 (0)421-2205-0 Fax +49 (0)421-2205-103 sales@bdal.de

Bruker Daltonics Inc.

Billerica, MA · USA Phone +1 (978) 663-3660 Fax +1 (978) 667-5993 ms-sales@bdal.com